Abstract

595 Background: Stromal TIL are a well-recognized prognostic and predictive biomarker in breast cancer. There is a need for tools assisting visual assessment of TIL, to improve reproducibility as well as for convenience. This study aims to assess the clinical significance of AI-powered spatial TIL analysis in the prediction of pathologic complete response (pCR) after NAC in TNBC patients. Methods: H&E stained slides and clinical outcomes data were obtained from stage I – III TNBC patients treated with NAC in two centers in Korea. For spatial TIL analysis, we used Lunit SCOPE IO, an AI-powered H&E Whole-Slide Image (WSI) analyzer, which identifies and quantifies TIL within the cancer or stroma area. Lunit SCOPE IO was developed with a 13.5 x 109 micrometer2 area and 6.2 x 106 TIL from 17,849 H&E WSI of multiple cancer types, annotated by 104 board-certified pathologists. iTIL score and sTIL score were defined as area occupied by TIL in the intratumoral area (%) and the surrounding stroma (%), respectively. Immune phenotype (IP) of each slide was defined from spatial TIL calculation, as inflamed (high TIL density in tumor area), immune-excluded (high TIL density in stroma), or desert (low TIL density overall). Results: A total of 954 TNBC patients treated from 2006 to 2019 were included in this analysis. pCR (ypT0N0) was confirmed in 261 (27.4%) patients. The neoadjuvant regimens used were mostly anthracycline (97.8%) and taxane (75.1%) -based, with 116 (12.1%) patients receiving additional platinum and 41 (4.3%) patients treated as part of immune checkpoint inhibitor or PARP inhibitor clinical trials. The median iTIL score and sTIL score were 4.3% (IQR 3.2 – 5.8) and 8.1% (IQR 6.3 – 13.4), respectively. The mean iTIL score was significantly higher in patients who achieved pCR after NAC (5.8% vs. 4.5%, p < 0.001), and a similar difference was observed with sTIL score (12.1%.1 vs. 9.4%, p < 0.001). iTIL score was found to remain as an independent predictor of pCR along with cT stage and Ki-67 in the multivariable analysis (adjusted odds ratio 1.211 (95% CI 1.125 – 1.304) per 1 point (%) change in the score, p <0.001). By IP groups, 291 (30.5%) patients were classified as inflamed, 502 (52.6%) as excluded, and 161 (16.9%) as desert phenotype. The patients with inflamed phenotype were more likely to achieve pCR (44.7%) than other phenotypes (19.8%, p < 0.001). Conclusions: AI-powered spatial TIL analysis could assess TIL densities in the cancer area and surrounding stroma of TNBC, and TIL density scores and IP classification could predict pCR after NAC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.