Abstract

ObjectivesThe aim of this study was to compare the accuracy of seven classical Machine Learning (ML) models trained with ultrasound (US) soft markers to raise suspicion of endometriotic bowel involvement. Materials and MethodsInput data to the models was retrieved from a database of a previously published study on bowel endometriosis performed on 333 patients. The following models have been tested: k-nearest neighbors algorithm (k-NN), Naive Bayes, Neural Networks (NNET-neuralnet), Support Vector Machine (SVM), Decision Tree, Random Forest, and Logistic Regression. The data driven strategy has been to split randomly the complete dataset in two different datasets. The training dataset and the test dataset with a 67 % and 33 % of the original cases respectively. All models were trained on the training dataset and the predictions have been evaluated using the test dataset. The best model was chosen based on the accuracy demonstrated on the test dataset. The information used in all the models were: age; presence of US signs of uterine adenomyosis; presence of an endometrioma; adhesions of the ovary to the uterus; presence of “kissing ovaries”; absence of sliding sign. All models have been trained using CARET package in R with ten repeated 10-fold cross-validation. Accuracy, Sensitivity, Specificity, positive (PPV) and negative (NPV) predictive value were calculated using a 50 % threshold. Presence of intestinal involvement was defined in all cases in the test dataset with an estimated probability greater than 0.5. ResultsIn our previous study from where the inputs were retrieved, 106 women had a final expert US diagnosis of rectosigmoid endometriosis. In term of diagnostic accuracy the best model was the Neural Net (Accuracy, 0.73; sensitivity, 0.72; specificity 0.73; PPV 0.52; and NPV 0.86) but without significant difference with the others. ConclusionsThe accuracy of ultrasound soft markers in raising suspicion of rectosigmoid endometriosis using Artificial Intelligence (AI) models showed similar results to the logistic model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.