Abstract

Recent advances in the Internet of Things (IoT) and the adoption of IoT in vehicular networks have led to a new and promising paradigm called the Internet of Vehicles (IoV). However, the mode of communication in IoV being wireless in nature poses serious cybersecurity challenges. With many vehicles being connected in the IoV network, the vehicular data is set to explode. Traditional intrusion detection techniques may not be suitable in these scenarios with an extremely large amount of vehicular data being generated at an unprecedented rate and with various types of cybersecurity attacks being launched. Thus, there is a need for the development of advanced intrusion detection techniques capable of handling possible cyberattacks in these networks. Toward this end, we present an artificial intelligence (AI)-based intrusion detection architecture comprising Deep Learning Engines (DLEs) for identification and classification of the vehicular traffic in the IoV networks into potential cyberattack types. Also, taking into consideration the mobility of the vehicles and the realtime requirements of the IoV networks, these DLEs will be deployed on Multi-access Edge Computing (MEC) servers instead of running on the remote cloud. Extensive experimental results using popular evaluation metrics and average prediction time on a MEC testbed demonstrate the effectiveness of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.