Abstract
This study aimed to create a deep learning model for predicting phenotypic physical frailty from electronic medical record information in patients with cardiovascular disease. This single-center retrospective study enrolled patients who could be assessed for physical frailty according to cardiovascular health study criteria (25.5% [691/2,705] of the patients were frail). Patients were randomly separated for training (Train set: 80%) and validation (Test set: 20%) of the deep learning model. Multiple models were created using LightGBM, random forest, and logistic regression for deep learning, and their predictive abilities were compared. The LightGBM model had the highest accuracy (in a Test set: F1 score 0.561; accuracy 0.726; area under the curve of the receiver operating characteristics [AUC] 0.804). These results using only commonly used blood biochemistry test indices (in a Test set: F1 score 0.551; accuracy 0.721; AUC 0.793) were similar. The created models were consistently and strongly associated with physical functions at hospital discharge, all-cause death, and heart failure-related readmission. Deep learning models derived from large sample sizes of phenotypic physical frailty have shown good accuracy and consistent associations with prognosis and physical functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.