Abstract
PurposeThe purpose of this study is to develop a synthesized conceptual framework for artificial intelligence (AI) adoption in the field of business-to-business (B2B) marketing.Design/methodology/approachA conceptual development approach has been adopted, based on a content analysis of 59 papers in peer-reviewed academic journals, to identify drivers, barriers, practices and consequences of AI adoption in B2B marketing. Based on these analyses and findings, a conceptual model is developed.FindingsThis paper identifies the following two key drivers of AI adoption: the shortcomings of current marketing activities and the external pressure imposed by informatization. Seven outcomes are identified, namely, efficiency improvements, accuracy improvements, better decision-making, customer relationship improvements, sales increases, cost reductions and risk reductions. Based on information processing theory and organizational learning theory (OLT), an integrated conceptual framework is developed to explain the relationship between each construct of AI adoption in B2B marketing.Originality/valueThis study is the first conceptual paper that synthesizes drivers, barriers and outcomes of AI adoption in B2B marketing. The conceptual model derived from the combination of information processing theory and OLT provides a comprehensive framework for future work and opens avenues of research on this topic. This paper contributes to both AI literature and B2B literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.