Abstract

In this chapter, we analyze the behavior of an adaptive immune system when solving dynamic constrained optimization problems (DCOPs). Our proposed approach is called Dynamic Constrained T-Cell (DCTC) and it is an adaptation of an existing algorithm, which was originally designed to solve static constrained problems. Here, this approach is extended to deal with problems which change over time and whose solutions are subject to constraints. Our proposed DCTC is validated with eleven dynamic constrained problems which involve the following scenarios: dynamic objective function with static constraints, static objective function with dynamic constraints, and dynamic objective function with dynamic constraints. The performance of the proposed approach is compared with respect to that of another algorithm that was originally designed to solve static constrained problems (SMES) and which is adapted here to solve DCOPs. Besides, the performance of our proposed DCTC is compared with respect to those of two approaches which have been used to solve dynamic constrained optimization problems (RIGA and dRepairRIGA). Some statistical analysis is performed in order to get some insights into the effect that the dynamic features of the problems have on the behavior of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.