Abstract

Artificial Immune Recognition System (AIRS) has shown an effective performance on several machine learning problems. In this study, the resource allocation method of AIRS was changed with a nonlinear method. This new algorithm, AIRS with nonlinear resource allocation method, was used as a classifier in Traditional Malay Music (TMM) genre classification. Music genre classification has a great important role in music information retrieval systems nowadays. The proposed system consists of three stages: feature extraction, feature selection and finally using proposed algorithm as a classifier. Based on results of conducted experiments, the obtained classification accuracy of proposed system is 88.6 % using 10 fold cross validation for TMM genre classification. The results also show that AIRS with nonlinear allocation method obtains maximum classification accuracy for TMM genre classification.KeywordsArtificial Immune SystemAIRSMusic Genre ClassificationNonlinear Resource allocation

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.