Abstract
Data mining technology has been applied in many fields. Prototype-based cluster analysis is an important data mining method, but its ability to discover knowledge is limited because of the need to know the number of target data categories and cluster prototypes in advance. Artificial immune evolutionary network clustering is a clustering method based on network structure. Compared with prototype-based cluster analysis, it has the advantage of realizing unsupervised learning and clustering without any prior knowledge of data. However, artificial immune evolutionary network clustering also has problems such as a lack of guidance in the clustering process, fuzzy boundary sensitivity, and difficulty in determining parameters. To solve these problems, an artificial immune network clustering algorithm based on a cultural algorithm is proposed. First, three kinds of knowledge are constructed: normative knowledge is used to regulate the spatial range of population initialization to avoid blindness; state knowledge is used to distinguish the type of antigen, and immune defense measures are taken to prevent the network structure caused by noise and boundaries from being unclear; and topology knowledge is used to guide the antigen for optimal antibody search. Second, topology knowledge in the cultural algorithm is used to characterize the distribution of antigens and antibodies in space, and elite learning is used to improve the traditional clone mutation operator. Based on the shadow set theory, a method for adaptively determining the compression threshold is proposed. Finally, the results of simulation experiments show that the proposed algorithm can effectively overcome the above problems, and the clustering performances on a synthetic dataset and an actual dataset are satisfactory.
Highlights
Data mining is the process of discovering specific information hidden in massive databases through various algorithms [1]
Based on the artificial immune evolutionary network clustering algorithm, this paper proposes a new algorithm of artificial immune network clustering based on a cultural algorithm
The main innovations of this article are summarized as follows: 1. We propose using the cultural algorithm to guide the artificial immune evolutionary network (aiNet) clustering algorithm and use the topology knowledge in the cultural algorithm to characterize the distribution of antigens and antibodies in the space, which greatly reduces the complexity of the algorithm search
Summary
Data mining is the process of discovering specific information hidden in massive databases through various algorithms [1]. We propose using the cultural algorithm to guide the aiNet clustering algorithm and use the topology knowledge in the cultural algorithm to characterize the distribution of antigens and antibodies in the space, which greatly reduces the complexity of the algorithm search.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: EURASIP Journal on Wireless Communications and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.