Abstract

In contrast to the thermodynamically unfavorable anodic oxygen evolution reaction, the electrocatalytic urea oxidation reaction (UOR) presents a more favorable thermodynamic potential. However, the practical application of UOR has been hindered by sluggish kinetics. In this study, hierarchical porous nanosheet arrays featuring abundant Ni-WO3 heterointerfaces on nickel foam (Ni-WO3/NF) is introduced as a monolith electrode, demonstrating exceptional activity and stability toward UOR. The Ni-WO3/NF catalyst exhibits unprecedentedly rapid UOR kinetics (200mAcm-2 at 1.384V vs. RHE) and a high turnover frequency (0.456s-1), surpassing most previously reported Ni-based catalysts, with negligible activity decay observed during a durability test lasting 150 h. Ex situ X-ray photoelectron spectroscopy and density functional theory calculations elucidate that the WO3 interface significantly modulates the local charge distribution of Ni species, facilitating the generation of Ni3+ with optimal affinity for interacting with urea molecules and CO2 intermediates at heterointerfaces during UOR. This mechanism accelerates the interfacial electrocatalytic kinetics. Additionally, in situ Fourier transform infrared spectroscopy provides deep insights into the substantial contribution of interfacial Ni-WO3 sites to UOR electrocatalysis, unraveling the underlying molecular-level mechanisms. Finally, the study explores the application of a direct urea fuel cell to inspire future practical implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.