Abstract
Nature-Inspired Computing (NIC) has always been a promising tool to enhance neural network learning. Artificial Fish Swarm Algorithm (AFSA) as one of the NIC methods is widely used for optimizing the global searching of ANN. In this study, we applied the AFSA method to improve the Multilayer Perceptron (MLP) learning for promising accuracy in various classification problems. The parameters of AFSA: AFSA prey, AFSA swarm and AFSA follow are implemented on the MLP network for improving the accuracy of various classification datasets from UCI machine learning. The results are compared to other NIC methods, i.e., Particle Swarm Optimization (PSO) and Differential Evolution (DE), in which AFSA gives better accuracy with feasible performance for all datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Information and Communication Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.