Abstract
The temperature in each cell of a battery system should be monitored to correctly track aging behavior and ensure safety requirements. To eliminate the need for additional hardware components, a software based prediction model is needed to track the temperature behavior. This study looks at machine learning algorithms that learn physical behavior of non-linear systems based on sample data. Here, it is shown how to improve the prediction accuracy using a new method called “artificial feature extraction” compared to classical time series approaches. We show its effectiveness on tracking the temperature behavior of a Li-ion cell with limited training data at one defined ambient temperature. A custom measuring system was created capable of tracking the cell temperature, by installing a temperature sensor into the cell wrap instead of attaching it to the cell housing. Additionally, a custom early stopping algorithm was developed to eliminate the need for further hyperparameters. This study manifests that artificially training sub models that extract features with high accuracy aids models in predicting more complex physical behavior. On average, the prediction accuracy has been improved by ΔTcell=0.01 °C for the training data and by ΔTcell=0.007 °C for the validation data compared to the base model. In the field of electrical energy storage systems, this could reduce costs, increase safety and improve knowledge about the aging progress in an individual cell to sort out for second life applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.