Abstract

A metamaterial structure composed of a periodic array of conductive rings including each a semiconductor-based isolator is experimentally shown to produce Faraday rotation. Due to the presence of the isolators, a unidirectional traveling-wave regime is established along the rings, generating rotating magnetic moments and hence emulating the phenomenon of electron spin precession. The metamaterial exhibits the same response as a magnetically biased ferrite or plasma, but without the need of any static magnetic field bias, and therefore, it is easily integrated in printed circuit technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.