Abstract

Successful cryopreservation of mammalian cells requires rapid transport of water and cryoprotective solutes across the plasma membrane. Aquaporin-3 is known as a water/solute channel that can transport water and neutral solutes such as glycerol. In this study we examined whether artificial expression of aquaporin-3 in mouse oocytes can improve water and glycerol permeability and oocyte survival after cryopreservation. Immature mouse oocytes were injected with aquaporin-3 cRNA and were cultured for 12 h. Then the hydraulic conductivity (L(P)) and glycerol permeability (P(GLY)) of matured oocytes were determined from the relative volume changes in 10% glycerol in PB1 medium at 25 degrees C. Mean +/- SD values of L(P) and P(GLY) of cRNA-injected oocytes (3.09 +/- 1.22 micro m min(-1) atm(-1) and 3.69 +/- 1.47 x 10(-3) cm/min, respectively; numbers of oocytes = 25) were significantly higher than those of noninjected oocytes (0.83 +/- 0.02 micro m min(-1) atm(-1) and 0.07 +/- 0.02 x 10(-3) cm/min, respectively; n = 13) and water-injected oocytes (0.87 +/- 0.10 micro m min(-1) atm(-1) and 0.08 +/- 0.02 x 10(-3) cm/min, respectively; n = 20). After cryopreservation in a glycerol-based solution, 74% of cRNA-injected oocytes (n = 27) survived as assessed by their morphological appearance, whereas none of the water-injected oocytes survived (n = 10). When cRNA-injected oocytes that survived cryopreservation were inseminated in vitro, the penetration rate was 40% (n = 48) and the cleavage rate was 31% (n = 70), showing that oocytes retain their ability to be fertilized. This is the first report to show that artificial expression of a water/solute channel in a cell improves its survival after cryopreservation. This approach may enable cryopreservation of cells that have been difficult to cryopreserve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.