Abstract

Enzymes are nanometer-sized molecules with three-dimensional structures created by the folding and self-assembly of polymeric chain-like components through supramolecular interactions. They are capable of performing catalytic functions usually accompanied by a variety of conformational states. The conformational diversities and complexities of natural enzymes exerted in catalysis seriously restrict the detailed understanding of enzymatic mechanisms in molecular terms. A supramolecular viewpoint is undoubtedly helpful in understanding the principle of enzyme catalysis. The emergence of supramolecular artificial enzymes therefore provides an alternative way to approach the structural complexity and thus to unravel the mystery of enzyme catalysis. This critical review covers the recent development of artificial enzymes designed based on supramolecular scaffolds ranging from the synthetic macrocycles to self-assembled nanometer-sized objects. Such findings are anticipated to facilitate the design of supramolecular artificial enzymes as well as their potential uses in important fields, such as manufacturing and food industries, environmental biosensors, pharmaceutics and so on.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.