Abstract

AbstractThis study delves into the realm of system identification, a crucial sub-field in control engineering, aimed at constructing mathematical models of systems based on input/output data. This work particularly proposes the application of artificial ecosystem algorithm (AEO) for solving system identification problems. Inspired by the energy flow of natural ecosystems, AEO has undergone specific modifications leading to derived versions. Additionally, five diverse meta-heuristic algorithms are employed to assess their applicability and performance in system identification using data from an air stream heater experiment kit. A comprehensive performance comparison is made, considering time bounds, maximum generations, early stopping, and function evaluation constraints, presenting their respective performances. Among the evaluated algorithms, the AEO algorithm enhanced with the sine and cosine strategy stands out with a determined R2 value of 0.951. This algorithm consistently outperforms others in Wilcoxon tests, showcasing its significant success. Our study affirms that meta-heuristic algorithms, particularly the proposed AEO algorithm, can be effectively applied to system identification problems, yielding successful calculations of transfer function parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.