Abstract

BackgroundThe development of artificial dermis provides a new therapeutic method for full-thickness skin defects. However, the slow regeneration of blood vessels in the wound site still cannot be solved perfectly. In our study, we combined platelet-rich plasma (PRP) with Lando® artificial dermal scaffold to promote vascular regeneration and wound healing in pigs.Material/MethodsFirst, PRP was compounded with the artificial dermal scaffold. Then, this material was co-cultured with human vascular endothelial cells (HUVECs) and the growth and proliferation of HUVECs were assessed. Bama miniature pigs wound models were fabricated, the materials were transplanted into the skin defect, and wound healing and blood vessel regeneration were assessed by HE staining and CD31 immunohistochemistry.ResultsScanning electron microscopy (SEM) showed that PRP formed round particles on the surface of the artificial dermis material. Cell co-culture experiments showed that the PRP composite artificial dermal scaffold can promote the growth and proliferation of HUVECs. CCK8 experiments demonstrated that the number of cells in the PRP composites group on days 2, 3, 4, and 5 was higher than that in the material alone group (P<0.01). The results of animal experiments showed that PRP composite artificial dermal material can promote wound healing. Histological staining and immunohistochemical staining indicated that the PRP composites group promoted epithelial tissue thickening and blood vessel regeneration in wounds (P<0.001).ConclusionsOur experimental results showed that the artificial dermal scaffold loaded with platelet-rich plasma can promote the revascularization of wounds and accelerated wound healing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.