Abstract

A method for producing various surfaces of silicone rubber membrane (SR) was developed in this study by grafting various amounts of poly(2-hydroxy ethyl methacrylate) (pHEMA) onto SR by plasma-induced grafted polymerization (PIP) as a homobifunctional membrane. The elemental composition and different carbon bindings on the surface of SR were examined by electron spectroscopy for chemical analysis with the amount of O1s C1s being approximately 0.7 at 1 min, 60 W, 200mTorr of Ar-plasma treatment. The peroxide group introduced on SR was measured via 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the amount of 6.85 × 10 −8mol cm −2 reached optimum value at 1 min of Ar-plasma treatment. After Ar-plasma treated SR, the peroxide group (33D peak) was introduced on the surface of SR by negative spectra of secondary ion mass spectroscopy analysis, whereas ester groups (72D peak) were observed for pHEMA-grafted SR. For the in vitro test, the influence of various surfaces of SR on attachment and growth of rabbit corneal epithelial cells (CEC) was studied by cell culture assay. These results indicated that 56–150μg cm −2 of pHEMA grafted onto SR were suitable values for attachment and growth of CEC. On the contrary, the large grafted amounts (500–1650 μgcm −2) of pHEMA on SR were insufficient for attachment and growth of CEC. For the in vivo test, the migration of CEC from host cornea to implant was investigated by slit lamp microscopy. The experimental results indicated that SRs grafted with pHEMA were completely covered with CEC 3 weeks after implantation of the membranes into the host cornea. These results provide a valuable reference for developing an artificial cornea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call