Abstract
In this paper, we have attempted to improve the aerodynamic force generation ability of an artificial wing by implementing initial wing camber in the flexible artificial wing. This initial camber is used to create passive wing camber during flapping motion. We modified original artificial wing by removing many minor vein structures in the wing and then placed the initial camber between two major veins. Stiffness measurements for the original artificial wing and the present wing with initial camber were conducted to compare the stiffnesses of the two artificial wings, and the similarities of the two wings are discussed. A flapping test was carried out using a previously-built flapper that can flap at higher than 25 Hz flapping frequency to verify the wing camber effect. Finally, a performance comparison between uncambered- and cambered-wings was also undertaken based on observations using a high-speed camera and force measurements from wired-flight tests and swing tests. The comparison showed that the cambered-wing could produce about 10% higher thrust than the uncambered-wing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.