Abstract

Biological organisms exist within environments in which complex nonlinear dynamics are ubiquitous. They are coupled to these environments via their own complex dynamical networks of enzyme-mediated reactions, known as biochemical networks. These networks, in turn, control the growth and behavior of an organism within its environment. In this paper, we consider computational models whose structure and function are motivated by the organization of biochemical networks. We refer to these as artificial biochemical networks and show how they can evolve to control trajectories within three behaviorally diverse complex dynamical systems: 1) the Lorenz system; 2) Chirikov's standard map; and 3) legged robot locomotion. More generally, we consider the notion of evolving dynamical systems to control dynamical systems, and discuss the advantages and disadvantages of using higher order coupling and configurable dynamical modules (in the form of discrete maps) within artificial biochemical networks (ABNs). We find both approaches to be advantageous in certain situations, though we note that the relative tradeoffs between different models of ABN strongly depend on the type of dynamical systems being controlled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.