Abstract

Photozymes or artificial photosynthesis based on alternative natural enzymes is vital for the sustainable development of next-generation healthcare, energy, and materials science. Herein, we report resorcinol-formaldehyde (RF) resins as a solar-driven metal-free bifunctional glucose oxidase-peroxidase stand-alone photozyme for the colorimetric dual detection of hydrogen peroxide and glucose. The π-bond conjugated benzenoid-ortho/para quinoid RF polymers are efficient for glucose oxidation and hydrogen peroxide reduction with concurrent 3,3',5,5'-tetramethylbenzidine oxidation under natural sunlight. The photoinduced colorimetric process could detect H2O2 up to 3.5 μM at 652 nm with the linear range of 0.1-2 mM. A limit of detection of 9.2 μM was exhibited by the system while measuring glucose with a linearity from 0.2 to 8.5 mM. The formation of hydroxyl radicals (•OH) from glucose oxidation reactions was evidenced by spin trapping electron paramagnetic resonance studies conducted herein. The results indicated that RF resins possessed strong intrinsic glucose oxidase and peroxidase (POx)-like activity under natural sunlight with promising storage and operation. This simple photozyme will definitely have potential uses in biomimetic solar-driven catalysis, bioenergy, and biomedicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.