Abstract
Artificial bee colony (ABC) algorithm is a nature-inspired algorithm that mimics the intelligent foraging behavior of honey bees and it is steadily gaining popularity. It is observed that convergence of ABC algorithm in local minimum is slow. This paper presents an effort to improve the convergence rate of ABC algorithm by integrating differential evolution (DE) operators into it. The proposed ABC-DE algorithm is first tested on three product design optimization problems and the results are compared with co-evolutionary differential evolution (CDE), hybrid particle swarm optimization-differential evolution (PSO-DE) and ABC algorithms. Further, the algorithm is applied on three manufacturing optimization problems, and the results are compared with genetic algorithm (GA), real coded genetic algorithm (RCGA), and RCGA with Laplace Crossover and Power Mutation (LXPM) algorithm and ABC algorithm. Results indicate that ABC-DE algorithm is better than the state of the art algorithms for the aforesaid problems on selected performance metrics.KeywordsArtificial bee colonyDifferential evolutionDesign optimizationManufacturing
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.