Abstract
Clustering Search (*CS) has been proposed as a generic way of combining search metaheuristics with clustering to detect promising search areas before applying local search procedures. The clustering process may keep representative solutions associated with different search subspaces. In this paper, new approaches are proposed, based on *CS, as an Artificial Bee Colony-based one, which detects promising food sources alike *CS approaches. The other new *CS approach is based on Differential Evolution (DE) algorithm. The DE is just a CS component (the evolutionary algorithm), different from ABC-based approach, called Artificial Bee Clustering Search (ABCS). ABCS tries to find promising solutions using some concepts from CS. The proposed hybrid algorithms, performing a Hooke and Jeeves-based local, are compared to another hybrid approaches, exploring an elitist criteria to apply local search. The experiments show that the proposed ABCS and Differential Evolutionary Clustering Search (DECS) are competitive for the majority continuous optimization functions benckmarks selected in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.