Abstract

Systemic investigation was carried out on the microstructure, superconducting properties, and flux pinning mechanism of MgB2 in situ fabricated with magnesium and g-C3N4 coated boron as precursors. The encapsulation of the boron powders with g-C3N4 was achieved by polycondensation of urea on boron powders. The g-C3N4 decomposes during the MgB2 fabrication to induce two-dimensional few-carbon layer, dispersed nanoparticles, and carbon-rich phases in the matrix to enhance the flux pinning force and Hirr of MgB2, which accounts for the in-field critical current density (Jc(H)) increase compared to the pure MgB2. The carbon layers acting as artificial two-dimensional flux pinning centers, have demonstrated high flux pinning efficiency to increase the Jc(H) of MgB2 superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.