Abstract

Recently, an independent component analysis (ICA) has been proven to be an effective method for removing artifacts and noise in multi-channel physiological measures. ICA can extract independent component (IC) which was directly regarded as artifacts. In this paper, we propose an automatic method for classifying physiological artifacts from magnetoencephalogram (MEG) data. The artifactual ICs were classified based on support vector machine (SVM) algorithm. The following parameters: kurtosis (K), probability density (PD), central moment of frequency (CMoF), spectral entropy (SpecEn), and fractal dimension (FD) were used as input vector of SVM. The proposed method showed the average classification rates of 99.18%, 92.33%, and 98.15% for cardiac (EKG), ocular (EOG), and high-amplitude changes (HAM), respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.