Abstract
BackgroundStructured illumination microscopy (SIM) is a method that can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. Optimization of the imaging set-up and data-processing methods results in high-quality images without artifacts due to mosaicking or due to the use of SIM methods. Reconstruction methods based on Bayesian estimation can be used to produce images with a resolution beyond that dictated by the optical system.FindingsFive complete datasets are presented including large panoramic SIM images of human tissues in pathophysiological conditions. Cancers of the prostate, skin, ovary, and breast, as well as tuberculosis of the lung, were imaged using SIM. The samples are available commercially and are standard histological preparations stained with hematoxylin-eosin.ConclusionThe use of fluorescence microscopy is increasing in histopathology. There is a need for methods that reduce artifacts caused by the use of image-stitching methods or optical sectioning methods such as SIM. Stitched SIM images produce results that may be useful for intraoperative histology. Releasing high-quality, full-slide images and related data will aid researchers in furthering the field of fluorescent histopathology.
Highlights
Structured illumination microscopy (SIM) is a method which can be used to image biological samples and can achieve both optical sectioning and super-resolution effects
The use of fluorescence microscopy is increasing in histopathology
There is a need for methods which reduce artifacts when employing image stitching methods or optical sectioning methods such as SIM
Summary
Structured illumination microscopy (SIM) is a method which can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. The combination of SIM with image stitching methods allows collection of large FOV images with both optical sectioning and super-resolution properties. Combining this with devignetting methods, we produced stitched images which are free of noticeable artifacts from stitching or from SIM reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.