Abstract

The phase problem is a well known ill-posed reconstruction problem of coherent lens-less microscopic imaging, where only the squared magnitude of a complex wavefront is measured by a detector while the phase information of the wave field is lost. To retrieve the lost information, common algorithms rely either on multiple data acquisitions under varying measurement conditions or on the application of strong constraints such as a spatial support. In X-ray near-field holography, however, these methods are rendered impractical in the setting of time sensitive in situ and operando measurements. In this paper, we will forego the spatial support constraint and propose a projected gradient descent (PGD) based reconstruction scheme in combination with proper preprocessing and regularization that significantly reduces artifacts for refractive reconstructions from only a single acquired hologram without a spatial support constraint. We demonstrate the feasibility and robustness of our approach on different data sets obtained at the nano imaging endstation of P05 at PETRA III (DESY, Hamburg) operated by Helmholtz-Zentrum Hereon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.