Abstract
Multivalent metal chelators, ethylenediaminetetraacetic acid (EDTA) and ethyleneglycoltetraacetic acid (EGTA), are used extensively during protein purification. Both strong (Q) and weak (DEAE) anion exchange resins were found to adsorb surprisingly large quantities of EDTA and EGTA that elute from the resin at NaCl concentrations of approximately 240 mM (EDTA) and 140 mM (EGTA). The EDTA/EGTA elution and saturation parameters were determined for five commonly used anion exchange resins. The resulting concentration of eluted EDTA was 10- to 200-fold higher than that originally present in the sample or in the mobile phase. Samples from fractions containing such a high concentration of EDTA were found to inhibit Mg 2+-dependent polymerase chain reaction (PCR). EDTA binding to the anion exchange resins could saturate the resin, decrease its binding capacity, and displace weakly bound proteins such as green fluorescent protein (GFP). Several steps are suggested to minimize on-column EDTA concentration, including column equilibration in the absence of any EDTA, lower concentrations (0.1–0.5 mM) of EDTA, monitoring eluate absorbance at 280 nm as well as at 215 nm, adding EDTA back into fractions eluting before the EDTA peak, and performing blank column runs to control for the effect of changes in EDTA concentration in downstream assays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.