Abstract
A method for optical near field discrimination, leading to drastic artifact reduction in superresolved imaging by scanning interference apertureless microscopy is presented. The method relies on second harmonic detection of the modulated optical signal scattered by a vibrating silicon tip. An edge resolution of 15 nm, or 7 nm Rayleigh-type resolution, with optical contrast as high as 50%, has been obtained on aluminum projection pattern samples in the constant gap width mode. Our method has been determined not to be affected by topographical artifacts by constant height mode scans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.