Abstract

We describe a technique to axially compress a sheep knee joint in an MRI scanner and measure articular cartilage deformation. As an initial application, tibial articular cartilage deformation patterns after 2 h of static loading before and after medial meniscectomy are compared. Precision was established for repeated scans and repeated segmentations. Accuracy was established by comparing to micro-CT measurements. Four sheep knees were then imaged unloaded, and while statically loaded for 2 h at 1.5 times body weight before and after medial meniscectomy. Images were obtained using a 3D gradient echo sequence in a 4.7 T MRI. Corresponding 3D cartilage thickness models were created. Nominal strain patterns for the intact and meniscectomized conditions were compared. Coefficients of variation were all 2% or less. Root mean squared errors of MR cartilage thickness measurements averaged less than 0.09 mm. Meniscectomy resulted in a 60% decrease in the contact area (P=0.001) and a 13% increase in maximum cartilage deformation (P=0.01). Following meniscectomy, there were greater areas of articular cartilage experiencing abnormally high and low nominal strains. Areas of moderate nominal strain were reduced. Medial meniscectomy resulted in increased medial tibial cartilage nominal strains centrally and decreased strains peripherally. Areas of abnormally high nominal strain following meniscectomy correlated with areas that are known to develop fibrillation and softening 16 weeks after medial meniscectomy. Areas of abnormally low nominal strain correlated with areas of osteophyte formation. Studies of articular cartilage deformation may prove useful in elucidating the mechanical etiology of osteoarthritis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.