Abstract

The cyanobacterium Arthrospira platensis biomass is a promising food source of biologically active substances with pharmacological activity. The aim of this research was a brief review and analysis of experimental in vitro and in vivo studies of the antioxidant, hypoglycemic and hypolipidemic properties of A. platensis biomass, phycocyanins, and their chromophore - phycocyanobilin. Material and methods. For the main search of the literature, the PubMed Internet resource was used, the key component of which is the Medline article database, covering about 75% of the world's medical publications. In addition, Scopus and Web of Science databases were used. Search depth - 20 years. Search keywords: Arthrospira platensis, phycobiliprotein, C-phycocyanin, allophycocyanin, hypoglycemic effect, hypolipidemic effect, antioxidant activity, in vitro and in vivo studies. Results. A brief description of the composition of the cyanobacterium Arthrospira platensis biomass, methods of its cultivation, phycocyanins extraction methods is presented. The results of experimental studies indicate the presence of pronounced antioxidant properties of A. platensis biomass, mainly due to phycocyanins in its composition. The hypoglycemic and hypolipidemic effects of A. platensis biomass and extracted phycocyanins intake have been established in vivo when modeling carbohydrate and/or lipid metabolism disorders. The results of in vitro and in vivo studies indicate the presence of pronounced antioxidant properties of phycocyanins. Hypoglycemic effects are shown in particular in experiments on rats with hyperlipidemia and alloxan diabetes fed a diet enriched with A. platensis biomass and on KKAy mice, treated with C-phycocyanin extract. Conclusion. The analysis of the results of in vitro and in vivo studies of the antioxidant, hypoglycemic and hypolipidemic properties of A. platensis biomass and extracts with a high content of phycocyanins, presented in a brief review, suggests that their use in the diet of people with impaired carbohydrate and lipid metabolism is promising. Accordingly, from the standpoint of evidence-based medicine, clinical studies on the use of spirulina biomass and/or its extracts with a high content of phycocyanins as part of specialized foods intended for the prevention and/or dietary correction of carbohydrate and lipid metabolism disorders should be preceded by additional experimental physical-chemical, physiological and biochemical research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call