Abstract

Despite advances in surgical technology, as well as generally good outcomes, repairs of full-thickness rotator cuff tears show a retear rate of 25% to 57% and may fail to provide full return of function. The repairs tend to fail at the suture-tendon junction, which is due to several factors, including tension at the repair site, quality of the tendon, and defective tissue repair. One strategy to augment repair of large to massive rotator cuff tears is the development of biological scaffold materials, composed of extracellular matrix (ECM). The goal is to strengthen and evenly distribute the mechanical load across the repair site, thus minimizing the rupture risk of the native tendon while providing the biological elements needed for healing. The promising results of ECM-derived materials and their commercial availability have increased their popularity among shoulder surgeons. In contrast to a traditional open or arthroscopically assisted mini-open approach, this completely arthroscopic technique offers the full advantages warranted by the use of a minimally invasive approach. This technical guide describes arthroscopic rotator cuff repair using an ECM graft technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.