Abstract

Knee joint effusion results in quadriceps inhibition and is accompanied by increased excitability in the soleus musculature. The purpose of this study was to determine if soleus arthrogenic muscle response is regulated by pre- or post-synaptic spinal mechanisms. Ten healthy adults (two females and eight males) were measured on two occasions. At the first session, subjects had their knee injected with 60 ml of saline and in the other session they did not. Pre- and post-synaptic spinal mechanisms were measured at baseline, immediately following a needle stick, immediately following a Xylocaine injection, and 25 and 45 min post-saline injection. A mixed effects model for repeated measures was used to analyze each dependent variable. The a priori alpha level was set a P≤0.05. The percentage of the unconditioned reflex amplitude for recurrent inhibition ( P<0.0001) and reflex activation history ( P<0.0001) significantly increased from baseline at 25 and 45 min post-effusion. Soleus arthrogenic muscle response seen following knee joint effusion is mediated by both pre- and post-synaptic mechanisms. In conclusion, the arthrogenic muscle response seen in the soleus musculature following joint effusion is regulated by both pre- and post-synaptic control mechanisms. Our data are the first step in understanding the neural networks involved in the patterned muscle response that occurs following joint effusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.