Abstract
Cannabinoids have analgesic, immunomodulatory and anti-inflammatory properties and attenuate joint damage in animal models of arthritis. In this study the mechanisms of action of the synthetic cannabinoid agonists, HU-210 and Win-55,212-2, were studied to determine if they affected interleukin-1 alpha (IL-1alpha)-induced proteoglycan and collagen degradation in bovine nasal cartilage explant cultures and prostaglandin E2 (PGE2) production in primary cultures of bovine articular chondrocytes. The effects of the inactive enantiomer, Win-55,212-3, were compared with those of the active enantiomer, Win-55,212-2, to determine if the effects were cannabinoid (CB)-receptor mediated. The chondrocytes and explants were stimulated by IL-1alpha (100 U mL(-1) identical with 0.06 nM and 500 U mL(-1) identical with 0.3 nM, respectively). Proteoglycan breakdown was determined as sulfated glycosaminoglycan (sGAG) release using the dimethylmethylene blue assay. Collagen degradation was determined as hydroxyproline in the conditioned culture media and cartilage digests. PGE2 was determined by ELISA. Expression of cannabinoid receptors, CB1 and CB2; cyclooxygenase-1 and -2 (COX-1 and COX-2); inducible nitric oxide synthase (iNOS); as well as activation of nuclear factor-kappa B (NF-kappaB) in chondrocytes were studied using immunoblotting techniques and immunofluorescence. The results showed that HU-210 and Win-55,212-2 (5-15 microM) significantly inhibited IL-1-alpha stimulated proteoglycan (P < 0.001) and collagen degradation (P < 0.001). Win-55,212-2 (5-10 microM) also significantly inhibited PGE2 production (P < 0.01). At 5 microM, Win-55,212-2 inhibited the expression of iNOS and COX-2 and activation of NF-kappaB. Chondrocytes appeared to constitutively express cannabinoid receptors CB1 and CB2. It is concluded that biologically stable synthetic cannabinoids protect cartilage matrix from degradation induced by cytokines and this effect is possibly CB-receptor mediated and involves effects on prostaglandin and nitric oxide metabolism. Cannabinoids could also be producing these effects via inhibition of NF-kappaB activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.