Abstract

BackgroundThe Republic of Congo adopted a new anti-malarial treatment policy in 2006, with artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) as the first- and second-line anti-malarial drugs, respectively. Only three clinical studies had been conducted before the policy change. A randomized study on these two artemisinin-based combinations was conducted, and the effect that sickle cell trait may have on treatment outcomes was evaluated in children under 10 years old followed during 12 months in Brazzaville in 2010–2011.MethodsA cohort of 330 children under 10 years of age living in a suburban area in the south of Brazzaville were passively followed for registration of malaria episodes. Uncomplicated Plasmodium falciparum episodes were randomly treated with co-formulated ASAQ (Coarsucam®) or AL (Coartem®). Patients were followed according to the 2009 World Health Organization protocol for the evaluation of anti-malarial drug efficacy. Plasmodium falciparum recrudescent isolates were compared to pre-treatment isolates by polymerase chain reaction (PCR) to distinguish between re-infection and recrudescence. PCR-uncorrected and PCR-corrected responses to treatment were determined using per protocol analysis. Haemoglobin type (AA, AS, SS) was determined by PCR.ResultsOf 282 clinical malaria episodes registered during 1-year follow-up period, 262 children with uncomplicated malaria were treated with ASAQ (129 patients) or AL (133 patients). The PCR-corrected efficacy, expressed as the percentage of adequate clinical and parasitological response, was 97.0 % for ASAQ and 96.4 % for AL. Among ASAQ-treated patients, 112 (86.8 %) carried AA genotype and 17 (13.2 %) were AS carriers. The PCR-corrected efficacy was 96.4 % for AA-carriers and 100 % for AS-carriers treated with ASAQ [relative risk (RR) = 0.96; 95 % confidence interval, 0.93–1.00, p = 0.5]. Among 133 AL-treated children, 109 (82 %) carried AA, and 24 (18 %) AS genotypes. The PCR-corrected efficacy was 96.7 % among AA-carriers and 95.2 % among AS-carriers [RR = 1.01 (0.92–1.12), p = 0.6]. Nausea, jaundice, headache, dizziness, vomiting, pruritus, abdominal pain, and diarrhoea were registered as adverse events in both groups. ASAQ was associated with significantly more frequent adverse events (P < 0.05).ConclusionThis first randomized study in Brazzaville confirmed the excellent efficacy of these co-formulated anti-malarial drugs in children. Sickle cell genotype did not influence the treatment efficacy of artemisinin-based combination therapy.

Highlights

  • The Republic of Congo adopted a new anti-malarial treatment policy in 2006, with artesunate-amodi‐ aquine (ASAQ) and artemether-lumefantrine (AL) as the first- and second-line anti-malarial drugs, respectively

  • Despite the impact of urbanization, malaria transmission is still intense in this area where children who are frequently infected with high parasite loads without signs of severe malaria are usually treated in health facilities for uncomplicated malaria

  • The present study has shown that ASAQ and AL have a comparable efficacy in malaria-infected children with HbAA and HbAS

Read more

Summary

Introduction

The Republic of Congo adopted a new anti-malarial treatment policy in 2006, with artesunate-amodi‐ aquine (ASAQ) and artemether-lumefantrine (AL) as the first- and second-line anti-malarial drugs, respectively. Almost all of Plasmodium falciparum isolates analysed in earlier studies carried the key pfcrt K76T mutation associated with chloroquine resistance, while quadruple mutations [defined as dihydrofolate reductase (dhfr) mutant alleles Asn51Ile + Cys59Arg + Ser108Asn and dihydropteroate syntase (dhps) mutant allele Ala437Gly] were present in more than 50 % of the isolates obtained from patients with SP treatment failure [6, 7]. Under these conditions, the management of malaria in health centres and at home had become difficult with anti-malarial drugs available in the early 2000s [8]. The progressive introduction of ACT and vector control measures have significantly reduced the prevalence of clinical cases and mortality due to malaria [13, 14]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.