Abstract

Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. Inhibition of the HSCs activity is an ideal strategy in the treatment of fibrosis, but there is no drug yet for this strategy. Artesunate (ART) has been shown to protect liver from fibrosis through inhibition of HSCs activity. However, the mechanism of ART activity remains to be fully uncovered. In this study, we tested ART in a mouse model of hepatic fibrosis established in the schistosomiasis-infected mice. The mechanism of ART action was investigated in the HSC cell line LX-2. ART significantly inhibited hepatic fibrosis. In LX-2 cells, ART efficiently inhibited the cell activity in proliferation and mRNA expression of fibrosis marker genes including Col1a1 and Col3a1. An impact of ART on mitochondria was observed for suppression of enzymes in the citric acid cycle (TCA), such as citrate synthase (CS), isocitrate dehydrogenase (IDH2), and alpha ketoglutarate dehydrogenase (OGDH) in a dose-dependent manner. ART decreased the mitochondrial oxygen consumption rate (OCR) and the protein levels of mitochondrial complex Ⅰ subunit NDUFB8 and complex Ⅲ subunit UQCRC2 in HSCs. All of these alterations were observed with an increase in HSC apoptosis. This study suggests that ART may alleviate liver fibrosis by downregulation of HSC activity through suppression of NDUFB8 and UQCRC2 in mitochondria. This study provides a new insight into the mechanism of the ART activity in the inhibition of schistosomiasis-induced liver fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call