Abstract
Artesunate, approved by the Food and Drug Administration in 2020 as a new treatment for severe malaria, also shows anti-tumour activity against acute myeloid leukaemia (AML). However, the underlying molecular mechanism(s) of artesunate-induced apoptosis and differentiation of AML is not clearly elucidated. The biological effects of artesunate on AML were explored in vitro, using cells from AML patients and leukaemia cell lines, and in vivo, using female C57BL/6 or nude nu/nu BALB/c mice. Underlying mechanisms in vitro were examined with the Trypan blue dye exclusion assay, western blotting and flow cytometry. Effects of artesunate in C57BL/6 mice intravenously injected with murine AML cells (C1498-GFP) were assessed by numbers of AML cells and by survival. In vitro, artesunate promoted apoptosis and differentiation in both leukaemia cell lines and patient-derived primary leukaemia cells. Mechanistically, artesunate promoted cell apoptosis by triggering reactive oxygen species (ROS) production and increasing expression of the pro-apoptotic protein Bim. Interestingly, transferrin receptor 1 (TFRC)-mediated regulation of intracellular iron homeostasis also played an essential role in AML cell differentiation induced by artesunate. In vivo, artesunate slowed AML progression and prolonged survival in a mouse leukaemia model. Notably, artesunate displayed no apparent toxicity towards healthy haematopoietic stem cells, bone marrow mononuclear cells or experimental animals. Artesunate is a safe agent with significant anti-leukaemia effects in mice and may serve as a promising chemotherapeutic strategy for patients with AML, based on two different mechanisms, targeting the ROS/Bim and the TFRC/Fe2+ pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.