Abstract

BackgroundArterial Tortuosity Syndrome (ATS) is a very rare autosomal recessive connective tissue disorder (CTD) characterized by tortuosity and elongation of the large- and medium-sized arteries and a propensity for aneurysm formation and vascular dissection. During infancy, children frequently present the involvement of the pulmonary arteries (elongation, tortuosity, stenosis) with dyspnea and cyanosis. Other CTD signs of ATS are dysmorphisms, abdominal hernias, joint hypermobility, skeletal abnormalities, and keratoconus. ATS is typically described as a severe disease with high rate of mortality due to major cardiovascular malformations. ATS is caused by mutations in the SLC2A10 gene, which encodes the facilitative glucose transporter 10 (GLUT10). Approximately 100 ATS patients have been described, and 21 causal mutations have been identified in the SLC2A10 gene.Case presentationWe describe the clinical findings and molecular characterization of three new ATS families, which provide insight into the clinical phenotype of the disorder; furthermore, we expand the allelic repertoire of SLC2A10 by identifying two novel mutations. We also review the ATS patients characterized by our group and compare their clinical findings with previous data.ConclusionsOur data confirm that the cardiovascular prognosis in ATS is less severe than previously reported and that the first years of life are the most critical for possible life-threatening events. Molecular diagnosis is mandatory to distinguish ATS from other CTDs and to define targeted clinical follow-up and timely cardiovascular surgical or interventional treatment, when needed.Electronic supplementary materialThe online version of this article (doi:10.1186/s12881-014-0122-5) contains supplementary material, which is available to authorized users.

Highlights

  • Arterial Tortuosity Syndrome (ATS) is a very rare autosomal recessive connective tissue disorder (CTD) characterized by tortuosity and elongation of the large- and medium-sized arteries and a propensity for aneurysm formation and vascular dissection

  • ATS has additional signs that are shared with other CTDs, i.e., Marfan syndrome (MFS), Loeys-Dietz syndrome (LDS), Cutis laxa (CL) and Ehlers-Danlos syndromes (EDS), including soft/velvety/hyperextensible skin, cutis laxa, mildly dysmorphic facial features, abdominal hernias, joint hypermobility, congenital contractures and other skeletal anomalies [2,3,4,5,6,7,8,9]

  • Severe right ventricular (RV) hypertension due to stenotic and tortuous pulmonary artery branches was resolved by surgical arterioplasty at 1 year of age (Figure 1, i) and with stenting of pulmonary arteries at 8 years

Read more

Summary

Introduction

Arterial Tortuosity Syndrome (ATS) is a very rare autosomal recessive connective tissue disorder (CTD) characterized by tortuosity and elongation of the large- and medium-sized arteries and a propensity for aneurysm formation and vascular dissection. Arterial Tortuosity Syndrome (ATS; MIM #208050) is a very rare autosomal recessive connective tissue disorder (CTD) characterized mainly by tortuosity and elongation of the large and medium-sized arteries and a propensity for aneurysm formation and vascular dissection. ATS has additional signs that are shared with other CTDs, i.e., Marfan syndrome (MFS), Loeys-Dietz syndrome (LDS), Cutis laxa (CL) and Ehlers-Danlos syndromes (EDS), including soft/velvety/hyperextensible skin, cutis laxa, mildly dysmorphic facial features (i.e., elongated face, hypertelorism, cleft palate and/or bifid uvula, and micro/retrognathia), abdominal hernias, joint hypermobility, congenital contractures and other skeletal anomalies [2,3,4,5,6,7,8,9]. All ATS patients require regular follow-up and may benefit from surgical interventions, i.e., aortic root replacement for aortic aneurysms; pulmonary artery reconstruction has yielded good clinical and hemodynamic outcomes in specific patients [5,10,11,12,13,14,15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call