Abstract

Background and Objective: Studies on relations between arterial stiffness and full spectrum of radiological features of cerebral small vessel disease (CSVD) are scarce. We aim to investigate the association of arterial stiffness with lacunes, white matter hyperintensities (WMH), microbleeds (CMBs), dilated perivascular spaces (PVS), and brain atrophy in a community-based sample.Methods: A total of 953 participants (55.7 ± 9.4 years) who underwent brachial-ankle pulse wave velocity (baPWV) and brain magnetic resonance imaging were included. Lacunes, CMBs, and PVS were visually rated. Brain structure and WMH were automatically segmented. Brain parenchyma fraction (BPF), a surrogate index of brain atrophy, was calculated as a ratio of brain parenchyma volume to total intracranial volume. Multivariable logistic and linear regressions were used to investigate the associations between baPWV and CSVD. Subsequently, we explored these associations in strata of age.Results: Increased baPWV was associated with severe PVS in white matter (OR, 1.09; 95%CI, 1.01–1.17; p = 0.022), larger WMH volume (β, 0.08; 95%CI, 0.04–0.12; p < 0.001), lower BPF (β, −0.09; 95%CI, −0.15– −0.03; p = 0.007), and marginally associated with strictly lobar CMBs (OR, 1.11; 95%CI, 1.00–1.23; p = 0.055), but not with lacunes. WMH volume mediated the relation between baPWV and BPF. In age subgroup analysis, the association of baPWV with PVS in white matter was stronger among those aged <55 years, whereas the association with brain atrophy was more prominent among those aged ≥55 years. Increased baPWV was associated with larger WMH volume in both younger and older individuals.Conclusions: Increased arterial stiffness was associated with most of imaging markers of CSVD, including PVS in white matter, larger WMH volume, strictly lobar CMBs, and brain atrophy, but not lacunes. The mechanisms underlying these associations and their potential clinical significances warrant further investigations.

Highlights

  • The arterial system gradually stiffens with aging and cardiovascular risk factors, especially in large elastic arteries [1]

  • Increased baPWV was associated with larger white matter hyperintensities (WMH) volume in both participants younger than 55 years and participants aged 55 years and older, and this association was not modified by age (p = 0.258 for interaction)

  • We found that arterial stiffness was associated with severe perivascular spaces (PVS)-white matter (WM), TABLE 4 | The association between baPWV and MRI markers of cerebral small vessel disease stratified by age

Read more

Summary

Introduction

The arterial system gradually stiffens with aging and cardiovascular risk factors, especially in large elastic arteries [1]. Though WMH, lacunes, CMBs, dilated perivascular spaces (PVS), and brain atrophy, are all regarded as imaging features of CSVD, the underling pathophysiological changes are different [7, 8]. Study investigating the association between arterial stiffness and whole spectrum of CSVD MRI markers is scarce, leaving limited understanding of the impacts of large-artery stiffness on different aspects of cerebral microvascular function. Studies on relations between arterial stiffness and full spectrum of radiological features of cerebral small vessel disease (CSVD) are scarce. We aim to investigate the association of arterial stiffness with lacunes, white matter hyperintensities (WMH), microbleeds (CMBs), dilated perivascular spaces (PVS), and brain atrophy in a community-based sample

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call