Abstract

BackgroundResearch on neurobiological markers of autism spectrum disorder (ASD) has been elusive. However, radionuclide studies of cerebral blood flow (CBF) have shown decreased blood flow (hypoperfusion) in the temporal lobes of individuals with ASD across ages and intelligence. This observation fits with current neuroscientific models that implicate temporal regions in social perception and social cognition. Arterial spin labeled perfusion MRI allows noninvasive quantification of regional CBF as part of a multimodal MRI protocol. This method is almost entirely absent from ASD research to date. Our a priori hypothesis was that children with ASD would present with hypoperfusion in the temporal lobes—most notably the fusiform gyrus (given its prominent role in ASD social perception deficits). We also sought to examine the reproducibility of CBF measures, and their relationship to individual differences in facial recognition and ASD symptoms.MethodsA total of 58 males (33 with ASD) between the ages of 12 and 17 years participated in the study. All children completed two arterial spin labeling and structural (T1) scans using a 3 T Siemens Verio scanner approximately 8 weeks apart, as well as behavioral testing at time 1 that included diagnostic measures and the Benton Facial Recognition Test. CBF was the key dependent variable, as was facial recognition performance, and ASD symptoms. The two scans were used for reliability analyses.ResultsThe ASD group showed hypoperfusion in the bilateral fusiform gyrus and in right inferior temporal gyrus. Intra-class correlations showed moderate to good reliability across time within both groups, and no diagnostic group × time interactions. CBF in the left fusiform gyrus was significantly positively correlated with facial recognition. No significant correlations were observed with core ASD symptoms.ConclusionsArterial spin labeling revealed hypoperfusion in children with ASD in regions critical to social perception and cognition. The left fusiform gyrus plays an important role in facial recognition, and greater CBF in this region was correlated with more normative facial recognition performance in children with ASD. This study takes an important first step in establishing CBF of the temporal lobes as a reliable marker of ASD.

Highlights

  • Research on neurobiological markers of autism spectrum disorder (ASD) has been elusive

  • Given the important role of the fusiform gyrus in processing of faces [29, 37], we explored whether perfusion in this area of the temporal lobe was sensitive to individual differences in social function and processing of faces

  • The present study showed that relative CBF (rCBF) has a dimensional relationship with facial recognition performance, such that greater perfusion in children with ASD is associated with better performance on a facial recognition task

Read more

Summary

Introduction

Research on neurobiological markers of autism spectrum disorder (ASD) has been elusive. Radionuclide studies of cerebral blood flow (CBF) have shown decreased blood flow (hypoperfusion) in the temporal lobes of individuals with ASD across ages and intelligence. This observation fits with current neuroscientific models that implicate temporal regions in social perception and social cognition. CBF provides absolute quantification of regional brain function It may provide a more reliable marker of trait-like effects than measures obtained through condition contrasts, such as blood-oxygen-leveldependent scanning that is typically used in task-based functional magnetic resonance imaging (MRI) [12,13,14,15,16,17,18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call