Abstract

We investigated the time interval from labeling to peak (TLP) of perfusion-signal intensity (SIs) in normal brain using a multiphase arterial spin-labeling (ASL) magnetic resonance imaging (MRI) technique as a fundamental study to assess the temporal characteristics of perfusion SIs. Twenty temporal phases of a pulsed ASL-MRI [QUASAR, quantitative signal targeting by alternating radiofrequency pulses (STAR) labeling of arterial regions] in single-slice imaging were performed in 9 volunteers. Perfusion SIs were measured and TLPs were calculated in 14 regions of interest (ROIs), 7 in each hemisphere: thalamus, lentiform nucleus, medial frontal cortex in the anterior cerebral artery (ACA) territory, temporal cortex in the middle cerebral artery (MCA) territory, medial occipital cortex in the posterior cerebral artery (PCA) territory, anterior watershed region (AWR) and posterior watershed region (PWR). Mean TLP varied with ROI (region and mean ± standard deviation in seconds): thalamus, 1.60 ± 0.11; lentiform nucleus, 1.52 ± 0.11; ACA territory, 1.53 ± 0.16; MCA territory, 1.59 ± 0.18; PCA territory, 1.68 ± 0.20; AWR, 1.79 ± 0.14; PWR, 2.00 ± 0.20. TLP in the PWR was significantly longer than those in all other regions except the AWR, and TLP in the AWR was significantly longer than those in the lentiform nucleus and the ACA territory. Our results revealed regional differences in the temporal characteristics of perfusion SIs on ASL-MRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call