Abstract

Exposure to shear stress has been shown to alter the expression of a number of surface components of cultured endothelial cells (EC). However, relatively few studies have examined the status of human EC surface proteins after prolonged flow, more closely corresponding to the steady state in vivo. Since the promoter region of glycoprotein (Gp) Ib alpha contains several copies of a putative shear stress response element, 5'-GAGACC-3', we investigated the response of cultured human umbilical vein EC (HUVEC) GpIb alpha to shear stress over a 72 h time period. In response to 30 dynes/cm2 of shear stress, total cell content of GpIb alpha protein was markedly increased above static levels at 7 and 24 h, as determined immunohistochemically. Western blot analysis of whole cell lysates after 24, 48, and 72 h of shear treatment demonstrated a 2.4-, 4.1-, and 3.2-fold increase in total GpIb alpha protein, respectively. Cell surface protein expression of GpIb alpha increased 2.5-fold at 7 h, as measured by quantitative immunofluorescence, and remained at that level at 24 h. After 48 h of shear stress, cell surface GpIb alpha, GpIX, and GpV, analyzed by flow cytometric analysis, were further increased over the levels observed at 24 h. The increase in cell surface membrane expression of GPIb alpha at 24, 48, and 72 h was confirmed by immunoprecipitation of biotinylated surface proteins. No upregulation of GpIb alpha was noted after exposure to shear stress of 1-3 dynes/cm2. These observations imply that under steady-state arterial shear conditions endothelial expression of the GpIb complex is significantly greater than observed in static EC cultures, and raise the possibility of a more important role for this complex under flow, rather than static conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.