Abstract

The spontaneous variation of blood pressure is defined as "blood pressure variability" (BPV). The chronic sinoaortic-denervated (SAD) rat is a model of high BPV without sustained hypertension. Little is known about vascular remodeling in this model. In the present study, we examined blood pressure, vascular remodeling, and aortic angiotensin II concentration in chronic SAD rats in separate experiments. In experiment 1, intra-arterial blood pressure was continuously recorded in conscious unrestrained rats. The 16-week SAD rats had a significant increase in BPV and no change in the mean level of blood pressure over a 24-h period. In experiment 2, we measured structural changes of seven kinds of arteries by histologic method and computer image analysis and functional changes of thoracic aortas by isolated artery preparation. Structural remodeling after 16-week sinoaortic denervation was characterized by increase in wall thickness, wall area, and ratio of wall thickness to internal diameter, with different changes in internal diameter and external diameter in different arteries, indicating that arterial structural remodeling expresses itself mainly as vascular growth. This vascular growth might be caused by medial smooth muscle cell growth and collagen accumulation. Aortic contraction induced by norepinephrine was potentiated, whereas aortic relaxation induced by acetylcholine was attenuated after sinoaortic denervation. In experiment 3, plasma and aortic angiotensin II concentrations were determined by radioimmunoassay. The former remained unchanged, whereas the latter was significantly increased in 10-week SAD rats. It is concluded that in rats chronic sinoaortic denervation can produce vascular remodeling that might be related to increased BPV and an activated tissue renin-angiotensin system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.