Abstract

Continuous and noninvasive monitoring of blood pressure has numerous clinical and fitness applications. Current methods of continuous measurement of blood pressure are either invasive and/or require expensive equipment. Therefore, we investigated a new method for the continuous estimation of two main features of blood pressure waveform: systolic and diastolic pressures. The estimates were obtained from a photoplethysmography signal as input to the fifth order autoregressive moving average models. The performance of the method was evaluated using beat-to-beat full-wave blood pressure measurements from 15 young subjects, with no known cardiovascular disorder, in supine position as they breathed normally and also while they performed a breath-hold maneuver. The level of error in the estimates, as measured by the root mean square of the model residuals, was less than 5 mmHg during normal breathing and less than 8 mmHg during the breath-hold maneuver. The mean of model residuals both during normal breathing and breath-hold maneuvers was considered to be less than 3.2 mmHg. The dependency of the accuracy of the estimates on the subject data was assessed by comparing the modeling errors for the 15 subjects. Less than 1% of the models showed significant differences (p < 0.05) from the other models, which indicates a high level of consistency among the models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.