Abstract
MCF7 cells are an estrogen-responsive human breast cancer cell line that expresses both estrogen receptor (ER) alpha and ERbeta. Treatment of MCF7 cells with artemisinin, an antimalarial phytochemical from the sweet wormwood plant, effectively blocked estrogen-stimulated cell cycle progression induced by either 17beta-estradiol (E(2)), an agonist for both ERs, or by propyl pyrazole triol (PPT), a selective ERalpha agonist. Artemisinin strongly downregulated ERalpha protein and transcripts without altering expression or activity of ERbeta. Transfection of MCF7 cells with ERalpha promoter-linked luciferase reporter plasmids revealed that the artemisinin downregulation of ERalpha promoter activity accounted for the loss of ERalpha expression. Artemisinin treatment ablated the estrogenic induction of endogenous progesterone receptor (PR) transcripts by either E(2) or PPT and inhibited the estrogenic stimulation of a luciferase reporter plasmid driven by consensus estrogen response elements (EREs). Chromatin immunoprecipitation assays revealed that artemisinin significantly downregulated the level of endogeneous ERalpha bound to the PR promoter, whereas the level of bound endogeneous ERbeta was not altered. Treatment of MCF7 cells with artemisinin and the pure antiestrogen fulvestrant resulted in a cooperative reduction of ERalpha protein levels and enhanced G(1) cell cycle arrest compared with the effects of either compound alone. Our results show that artemisinin switches proliferative human breast cancer cells from expressing a high ERalpha:ERbeta ratio to a condition in which ERbeta predominates, which parallels the physiological state linked to antiproliferative events in normal mammary epithelium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.