Abstract
Alternative biotechnological protocol for large-scale artemisinin production was established. It featured enhanced growth and artemisinin production by cultivation of hairy roots in nutrient mist bioreactor (NMB) coupled with novel cultivation strategies. Artemisinin is used for the treatment of cerebral malaria. Presently, its main source is from seasonal plant Artemisia annua. This study featured investigation of growth and artemisinin production by A. annua hairy roots (induced by Agrobacterium rhizogenes-mediated genetic transformation of explants) in three bioreactor configurations-bubble column reactor, NMB and modified NMB particularly to establish their suitability for commercial production. It was observed that cultivation of hairy roots in a non-stirred bubble column reactor exhibited a biomass accumulation of 5.68 g/l only while batch cultivation in a custom-made NMB exhibited a higher biomass concentration of 8.52 g/l but relatively lower artemisinin accumulation of 0.22 mg/g was observed in this reactor. A mixture of submerged liquid-phase growth (for 5 days) followed by gas-phase cultivation in nutrient mist reactor operation strategy (for next 15 days) was adopted for hairy root cultivation in this investigation. Reasonably, high (23.02 g/l) final dry weight along with the artemisinin accumulation (1.12 mg/g, equivalent to 25.78 mg/l artemisinin) was obtained in this bioreactor, which is the highest reported artemisinin yield in the gas-phase NMB cultivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.