Abstract

Emerging evidence suggests that artemisinin (ART) can modulate pathogen-induced immune responses and metabolic dysregulation. However, whether this modulation is associated with metabolic pathways related to oxidative stress and inflammation remains unclear. The aim of this study was to investigate the antioxidant and anti-inflammatory effects on the ART-fed juvenile fat greenling Hexagrammos otakii and the associated metabolic pathways in response to ART administration using an integrated biochemical and metabolomic approach. Biochemical analysis and histological examination showed that ART significantly increased body weight gain and improved tissue structure. ART effectively attenuated reactive oxygen species (ROS), malondialdehyde (MDA) and inflammatory responses (NFκB, TNF-α, IL-6, and MCP-1) in the Edwardsiella tarda-induced H. otakii model. Liver metabolomics analysis revealed that twenty-nine metabolites were up-regulated and twenty-one metabolites were down-regulated after ART administration compared to those in pathogen-induced fish. Pathway analysis indicated that ART alleviated the E. tarda-induced inflammation and oxidative stress through two major pathways, namely lipid metabolism and amino acid metabolism. Taken together, ART showed great potential as a natural feed additive against pathogen-induced oxidative stress and inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.