Abstract
We reported previously that Artemisinin (ART), a widely used anti-malarial drug, is an inhibitor of in vitro HCV subgenomic replicon replication. We here demonstrate that ART exerts its antiviral activity also in hepatoma cells infected with full length infectious HCV JFH-1. We identified a number of ART analogues that are up to 10-fold more potent and selective as in vitro inhibitors of HCV replication than ART. The iron donor Hemin only marginally potentiates the anti-HCV activity of ART in HCV-infected cultures. Carbon-centered radicals have been shown to be critical for the anti-malarial activity of ART. We demonstrate that carbon-centered radicals-trapping (the so-called TEMPO) compounds only marginally affect the anti-HCV activity of ART. This provides evidence that carbon-centered radicals are not the main effectors of the anti-HCV activity of the Artemisinin. ART and analogues may possibly exert their anti-HCV activity by the induction of reactive oxygen species (ROS). The combined anti-HCV activity of ART or its analogues with L-N-Acetylcysteine (L-NAC) [a molecule that inhibits ROS generation] was studied. L-NAC significantly reduced the in vitro anti-HCV activity of ART and derivatives. Taken together, the in vitro anti-HCV activity of ART and analogues can, at least in part, be explained by the induction of ROS; carbon-centered radicals may not be important in the anti-HCV effect of these molecules.
Highlights
Worldwide, an estimated 180 million people are chronically infected with the hepatitis C virus (HCV) [1]
We studied whether ART is effective in hepatoma cells infected with the infectious HCV JFH-1
We assessed the antiviral activity of novel ART derivatives belonging to three different categories (AJ, TVN and DW)
Summary
An estimated 180 million people are chronically infected with the hepatitis C virus (HCV) [1]. The current therapy consists of pegylated interferon a (peg-IFNa), Ribavirin (RBV) in combination with either the protease inhibitor (PI) Telaprevir or Boceprevir. This combination therapy has been reported to be effective in up to 79% of the treated patients infected with HCV [1,2]. Because of its low solubility and poor oral bioavailability, its therapeutic efficacy is not optimal [11,13] To combat these hurdles, numerous ART analogues were synthesized and evaluated for their potential anti-microbial effect [14]. Some of these compounds exhibited, in vitro, anti-herpes viruses, anti-human cytomegalovirus, anti-human immunodeficiency virus and anti-hepatitis B virus activity [15–
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.