Abstract

Artemis is a multifunctional phospho-protein with roles in V(D)J recombination, repair of double-strand breaks by nonhomologous end-joining, and regulation of cell cycle checkpoints after DNA damage. Here, we describe a novel function of Artemis as a negative regulator of p53 in response to oxidative stress in both primary cells and cancer cell lines. We show that depletion of Artemis under typical culture conditions (21% oxygen) leads to a spontaneous phosphorylation and stabilization of p53, and resulting cellular G1 arrest and apoptosis. These effects are suppressed by co-depletion of DNA-PKcs, but not ATM, indicating that Artemis is an inhibitor of DNA-PKcs-mediated stabilization of p53. Culturing of cells at 3% oxygen or treatment with an antioxidant abrogated p53 stabilization indicating that oxidative stress is the responsible cellular stimulus. Treatment with IR or hydrogen peroxide did not cause activation of this signaling pathway, while inhibitors of mitochondrial electron transport were effective in reducing its activation. In addition, we show that p53-inducible genes involved in reducing reactive oxygen species (ROS) are upregulated by Artemis depletion. These findings indicate that Artemis and DNA-PKcs participate in a novel, signaling pathway to modulate p53 function in response to oxidative stress produced by mitochondrial respiration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.