Abstract

BackgroundBecause of expanding presence of nanomaterials, there has been an increase in the exposure of humans to nanoparticles that is why nanotoxicology studies are important. A number of studies on the effects of nanomatrials in in vitro and in vivo systems have been published. Currently cytotoxicity of different nanoparticles is assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on different cell lines to determine cell viability, a tedious and expensive method. The aim of this study was to evaluate the Artemia salina test in comparison with the MTT assay in the assessment of cytotoxicity of nanostructures because the former method is more rapid and convenient and less expensive.MethodsAt the first stage, toxicity of different nanoparticles with different concentrations (1.56–400 μg/mL) was measured by means of the brine shrimp lethality test. At the second stage, the effect of nanoparticles on the viability of the L929 cell line was assessed using the MTT assay. Experiments were conducted with each concentration in triplicate.ResultsThe results obtained from both tests (A. salina test and MTT assay) did not have statistically significant differences (P > 0.05).ConclusionsThese findings suggest that the A. salina test may expedite toxicity experiments and decrease costs, and therefore, may be considered an alternative to the in vitro cell culture assay.

Highlights

  • Because of expanding presence of nanomaterials, there has been an increase in the exposure of humans to nanoparticles that is why nanotoxicology studies are important

  • Materials Fetal bovine serum (FBS), phosphate-buffered saline (PBS), trypsin, penicillin, streptomycin, DMSO, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), Triton X-100, and the RPMI-1640 medium supplemented with 10% heat inactivated FBS were purchased from Sigma–Aldrich

  • The zeta potential and particle size distribution of the prepared nanoparticles were determined by photon correlation spectroscopy (PCS) using a Nano/zetasizer (Malvern Instruments, Nano ZS, Worcestershire, UK) working on the dynamic light scattering (DLS) platform

Read more

Summary

Introduction

Because of expanding presence of nanomaterials, there has been an increase in the exposure of humans to nanoparticles that is why nanotoxicology studies are important. Cytotoxicity of different nanoparticles is assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on different cell lines to determine cell viability, a tedious and expensive method. The aim of this study was to evaluate the Artemia salina test in comparison with the MTT assay in the assessment of cytotoxicity of nanostructures because the former method is more rapid and convenient and less expensive. Nanotechnology is the use of nanoscience to design NMs (nanomaterials) and NPs (nanoparticles), with structural components between 1 and 100 nanometers; it is thought to be one of the key technologies of the 21st century [3,4]. Some potential hazards have been identified in the life cycle

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.