Abstract

To evaluate the effect of cone-beam computed tomography (CBCT) tube current (mA) on the magnitude of artefacts at different distances from titanium or zirconia implants, with and without activation of a proprietary metal artefact reduction (MAR). Human mandibles were scanned on an OP300 Maxio CBCT unit (Instrumentarium, Tuusula, Finland) before and after the installation of dental implants, with four different tube currents (4 mA, 6.3 mA, 8 mA and 10 mA), with and without activation of proprietary MAR. The effect of mA on the standard deviation (SD) of gray values and contrast to noise ratio (CNR) were assessed in regions of interest located 1.5 cm, 2.5 cm, and 3.5 cm from implants. In the presence of titanium implants, a significant decrease in SD was found by increasing tube current from 4 mA to 6.3 mA or 8 mA. For zirconia implants, 8 mA yielded better results for all distances. MAR improved CNR in the presence of zirconia implants at all distances, whereas no differences were observed with the use of MAR for titanium implants. Increased tube current can improve overall image quality in the presence of implants, at all the distances tested. When a zirconia implant is present, such increase in mA should be higher in comparison to that for examinations with titanium implants. Activation of OP300 Maxio proprietary MAR improved image quality only among examinations with zirconia implants. Artefact-generating implants are common in the field of view of CBCT examinations. Optimal exposure parameters, such as tube current, ensure high image quality with lowest possible radiation exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call